Proof of the Ratio Test

The Ratio Test has three parts, (a), (b), and (c), and each part requires a separate proof.
(a) L<l => the series is absolutely convergent. The basic pattern of the proof for this part is to show
that the given series is, term—by—term, less than a convergent geometric series. Then we conclude by

the Comparison Test that the given series converges.
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it is the sum of two convergent series. T A Is absolutely convergent.
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(b) L>1 => the series is divergent. The basic idea in this part is to show that the terms of the given series do

not approach 0. Then we can conclude by the N Term Test that the given series diverges.
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(Section 10.2) we can conclude that the series Y A is divergent.
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Part (c) proof was in the video.



