Proof of the Ratio Test

The Ratio Test has three parts, (a), (b), and (c), and each part requires a separate proof.

(a) L<1 ⇒ the series is absolutely convergent. The basic pattern of the proof for this part is to show that the given series is, term-by-term, less than a convergent geometric series. Then we conclude by the Comparison Test that the given series converges.

Suppose $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$. Then there is a number r between

L and 1 so that the ratios $\left| \begin{array}{c} \frac{a_{n+1}}{a_n} \end{array} \right|$ are eventually (for all n > some N) less than r:

for all
$$n > N$$
, $\left| \begin{array}{c} a_{n+1} \\ \hline a_n \end{array} \right| < r < 1$.

 $\begin{array}{ll} \text{Then} & | \, a_{N+1} \, | < r \, | \, a_N \, | \, , \, | \, a_{N+2} \, | < r \, | \, a_{N+1} \, | < r^2 \, | \, a_N \, | \, , \, | \, a_{N+3} \, | < r \, | \, a_{N+2} \, | < r^3 \, | \, a_N \, | \, , \\ & \text{and, in general, } | \, a_{N+k} \, | < r^k \, | \, a_N \, | \, . \end{array}$

So $|a_N| + |a_{N+1}| + |a_{N+2}| + |a_{N+3}| + |a_{N+4}| + \dots$ $< |a_N| + r |a_N| + r^2 |a_N| + r^3 |a_N| + r^4 |a_N| + \dots$ $= |a_N| \cdot \{1 + r + r^2 + r^3 + r^4 + \dots \}$ $= |a_N| \cdot \frac{1}{1-r} \quad \text{, since the powers of r form a convergent geometric series,}$ and the series $\sum_{n=N}^{\infty} |a_n| \quad \text{is convergent by the Comparison Test.}$

Finally, we can conclude that the series $\sum\limits_{n=1}^{\infty} |a_n| = \sum\limits_{n=1}^{N-1} |a_n| + \sum\limits_{n=N}^{\infty} |a_n|$ is convergent, since

it is the sum of two convergent series. $\sum\limits_{n=1}^{\infty}a_{n}$ is absolutely convergent.

(b) L>1 \Rightarrow the series is divergent. The basic idea in this part is to show that the terms of the given series do not approach 0. Then we can conclude by the Nth Term Test that the given series diverges.

Suppose $\lim_{n\to\infty} \left| \begin{array}{c} \frac{a_{n+1}}{a_n} \end{array} \right| = L > 1$. Then the ratios $\left| \begin{array}{c} \frac{a_{n+1}}{a_n} \end{array} \right|$ are eventually (for all n > some N)

larger than 1 so $|a_{N+1}| > |a_N|$, $|a_{N+2}| > |a_{N+1}| > |a_N|$, $|a_{N+3}| > |a_{N+2}| > |a_N|$, and, for all k > N, $|a_k| > |a_N|$.

Thus $\lim_{n\to\infty} |a_n| \ge |a_N| \ne 0$ and $\lim_{n\to\infty} a_n \ne 0$, so by the Nth Term Test for Divergence

(Section 10.2) we can conclude that the series $\sum\limits_{n=1}^{\infty}a_{n}$ is divergent.

Part (c) proof was in the video.